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Abstract
Purpose of Review To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments 
using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-
based shortcomings from randomized clinical trials are fundamental in accelerating future progress.
Recent Findings Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, 
type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and 
angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and research-
ers hold low awareness of these drugs’ limitations in preventing or reducing the risk of cardiovascular events. Biases in 
interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative 
risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension 
guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze 
the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the 
magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bio-
processing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors 
and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this 
presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology 
alone or possibly in combination with other antihypertensive drugs.
Summary A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based 
therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular 
complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with 
increased capacity to reach the intracellular compartments at which Ang II can be generated.

Keywords Angiotensin II · Angiotensin-(1–12) · Angiotensin converting enzyme · Angiotensin receptor blockers · 
Hypertension clinical trials · Residual risk · Blood pressure · Renal disease · Immunotherapy · Monoclonal antibodies
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ACCOMPLISH  Avoiding Cardiovascular Events 

through Combination Therapy 
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ACE  Angiotensin converting enzyme
AGT   Angiotensinogen
ALLHAT  Antihypertensive and Lipid-Lowering 

Treatment to Prevent Heart Attack Trial
ANBP2  Second Australian National Blood Pres-

sure Study
Ang II  Angiotensin II
Ang-(1‒12)  Angiotensin-(1–12)
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Ang-(1–7)  Angiotensin-(1–7)
ARBs  Ang II receptor blockers
ASCOT BPLA  Anglo-Scandinavian Cardiac Outcomes 

Trial-Blood Pressure Lowering Arm
ASO  Antisense oligonucleotides
AT1-R  Type I Ang II receptor
CAGR   Compound annual growth rate
CAPPP  Captopril prevention project
CASE-J Ex  Candesartan Antihypertensive Survival 

Evaluation in Japan extension
COLM  Combination of OLMesartan
CVD  Cardiovascular disease
E-COST  Efficacy of Candesartan on Outcome in 

Saitama Trial
EUROPA  European trial on reduction of cardiac 

events with perindopril in stable coro-
nary artery disease

HIJ-CREATE  Heart Institute of Japan Candesartan 
Randomised Trial for Evaluation in 
CAD

HOPE  Heart Outcomes Prevention Evaluation
HYVET  Hypertension in the Very Elderly Trial
JMIC-B  The Japan Multicenter Investigation for 

Cardiovascular Diseases-B
LDL  Low-density lipoprotein
LIFE  Losartan Intervention for Endpoint 

Reduction
mAb  Monoclonal antibody
MOSES  Morbidity and Mortality After Stroke, 

Eprosartan Compared With Nitrendip-
ine for Secondary Prevention

Introduction

Hans Christian Andersen’s The Naked Emperor tale illus-
trates a situation wherein most observers share a collective 
ignorance of an obvious fact. In the context of this pres-
entation, we address the belief that medications preventing 
angiotensin II (Ang II) formation or its binding to the type I 
Ang II receptor  (AT1-R) are highly efficacious in preventing 
cardiovascular and total mortality [1•].

Although the ability of direct renin inhibitors (DRI), 
angiotensin converting enzyme (ACE) inhibitors, and Ang II 
receptor blockers (ARBs) to control blood pressure is with-
out questioning, in-depth analysis of the results obtained in 
randomized clinical trials (RCT) and large meta-analysis [2] 
reveals their limitations in reducing cardiovascular events 
when a critical appraisal of the absolute and residual risks 
obtained in clinical trials are critically reexamined.

The cornerstone of evidence-based medicine relies upon 
the conclusions obtained in large clinical trials. The infor-
mation furnished by well-conducted RCT in the treatment 

of CVD determines treatment recommendations in interna-
tional guidelines and influences the direction of basic sci-
ence research. RCT expresses the efficacy of medical inter-
vention in terms of relative risk reduction (an estimate of the 
percentage of baseline risk that is removed because of the 
new therapy) and absolute risk reduction (the proportion of 
patients who are spared the adverse outcome by receiving 
the new medication rather than the control therapy) [3]. In 
the past, international guidelines focused on documenting 
the absolute risk [4••]. Increased influence of commercial 
entities in financing RCT and the fact that absolute risk did 
not always translate into clinical effectiveness [5] favored 
the use of relative risk reduction as the basis for establishing 
therapeutic efficacy [6, 7•]. The pitfalls regarding the com-
mon use of relative risk reduction versus absolute risk are 
stressed by the Blood Pressure Lowering Treatment Trialists’ 
Collaboration [8, 9•, 10] and underscored in a meta-analysis 
that included 67,475 individuals from 11 RCTs and 26 ran-
domized groups [9•]. This later study showed that blood 
pressure control for five years in 1000 patients assigned to 
different levels of predicted absolute risk prevented 14 (95% 
CI: 8–21), 20 (95% CI: 8–31), 24 (95% CI: 8–40), and 38 
(95% CI: 16–61) cardiovascular events, respectively [9•]. 
These data contrast with the larger numerically value of the 
reported relative risk reduction in RCT [4••, 11].

The Residual Risk in Primary Hypertension

Cardiologists pioneered assessing the residual risk in 
explaining the probability of vascular events in patients 
with adequate control of proatherogenic factors [12, 13••]. 
According to Vanuzzo [13••], “the residual CVD risk is 
the risk of CVD events persisting despite treatment for 
or achieving targets for risk factors such as low-density 
lipoprotein (LDL) cholesterol, blood pressure, and glyce-
mia.” Unfortunately, the investigation of the residual risk 
to explain the limited efficacy of antihypertensive medica-
tions remains underrecognized. The term residual risk is 
not found in the 55 pages of the joint ACC/AHA Hyperten-
sion guidelines [14], while the concept of the residual risk 
is briefly mentioned in the 2020 International Society of 
Hypertension global hypertension practice guidelines [15].

Figure 1 illustrates the main components of the residual 
risk and the critical contribution of excess RAS activity in 
contributing to hypertension pathogenesis. Lifestyle changes 
such as sedentarism, salt [16], and alcohol intake, obesity, 
tobacco smoking, atherogenic dyslipidemia [increased blood 
concentrations of small, dense LDL particles, decreased 
high-density lipoprotein (HDL) particles, increased tri-
glycerides, inadequate blood pressure control [poor choice 
of antihypertensive medications, resistant hypertension, 
adherence to therapy [17]], chronic systemic inflammation 
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[18–21], neuro-hormonal activation (increased sympathetic 
nerve activity [22, 23], and the metabolic derangement 
brought about by type 2 diabetes, and insulin resistance 
[24] contribute to the disease process. The importance of 
addressing the contribution of blood pressure-independent 
mechanisms was documented in the STENO-2 trial [25]. In 
this RCT, co-treatment of multiple risk factors reduced the 
risk of cardiovascular and microvascular events by almost 
50 percent [25].

The Renin Angiotensin System 
and the Residual Risk

A considerable amount of knowledge from both clinical and 
experimental research implicates a primary contribution of 
the RAS to the pathogenesis of primary hypertension [26•]. 
These accomplishments have translated into making ACE 
inhibitors and ARBs a cornerstone of treating cardiovascular  
and renal disease patients [1•]. Nevertheless, their proven 
ability to control blood pressure obscures a suboptimal long-
term efficacy in halting or avoiding cardiovascular events 
[27]. We [28, 29, 30••, 31, 32], Dusing [33, 34••], and others 
[9•, 11, 13••, 35, 36, 37•, 38] have independently addressed 
the limited efficacy of ACE inhibitors and ARBs in reducing 
the magnitude of clinical events in treated hypertensives. 

Brugts et al. [37•] analyzed the impact of RAS inhibitors 
on all-cause mortality and major cardiovascular events in 
hypertension. Their study included seven trials using ACE 
inhibitors as the active treatment and 11 other trials using 
ARBs. All-cause mortality incidents were reduced by 
approximately 10% in patients medicated with ACE inhibi-
tors and not in patients medicated with ARBs. On the other 
hand, cardiovascular mortality was not different in patients  
medicated with RAS inhibitors compared to control medica-
tions [37•].

Figures 2 and 3 contrast the magnitude of the relative 
risk reduction versus the residual risk in the primary end-
point reported in major hypertension clinical trials using 
ACE inhibitors or ARBs. The pooled relative risk reduction 
of the primary endpoint in 10 hypertension clinical trials 
using ACE inhibitors versus conventional therapy averaged 
8%, representing a residual risk of 92% (Fig. 2). In addition, 
in eight of the ten studies illustrated in Fig. 2, the upper 
limit of the confidence interval includes or crosses (1.0). 
This finding indicates insufficient evidence to conclude that 
ACE therapy is better than conventional therapy in reducing 
the primary endpoint. A similar compilation of the impact 
of ARBs in 11 clinical trials documents a polled relative 
risk reduction of 10% and a residual risk amounting to 90% 
(Fig. 3). As with the data obtained from ACE inhibitor trials 
(Fig. 2), the null hypothesis (i.e., no differences between the 

Fig. 1  Composite diagram of a 
central role of the renin angio-
tensin system in contributing 
to the lifetime residual risk in 
primary hypertension

Residual Cardiovascular Risk

Mechanisms Involved in Disease
Progression
Alternate Ang II Forming Mechanisms
Contribu�ng to Disease Progression
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two arms of the study) in the confidence interval is present 
in eight of the 11 clinical trials. This further analysis stresses 
that the residual risk in patients treated with ACE inhibitors 
or ARBs is eight to ten times higher than the benefit.

Defying Attempts to Untie the Gordian Knot

Given the monumental genetic, molecular, physiological, 
and clinical evidence for critical participation of Ang II in 
the pathogenesis of CVD, it is paradoxical that the long-term 
effects of RAS-based therapies fall short of expectations. 
While environmental and phenotypic factors, as outlined in 
Fig. 1, contribute to limiting the benefits of these agents in 
preventing clinical events, there is only a marginal improve-
ment in the residual risk by including hypertension trials in 
which patients receive concomitant therapies with statins 
and antiplatelet agents [39, 40].

Failure to translate basic research evidence into clinical 
outcomes may include the following: the greater rigor of 
the procedures used in animal experimentation, the inter-
vening effect of genetic and metabolic cofactors differences 
between laboratory animals and humans, suboptimal dosing 
of RAS inhibitors, treatment adherence, and a limited under-
standing regarding how age and andropause/menopause [41] 
influences therapeutic responses. Often, recommended ther-
apeutic dosing of medications in humans ignores the impact 
of a 100-fold difference in body surface area (BSA) between 
rodents and humans [42, 43].

We have suggested that the long-term therapeutic efficacy 
of ACE inhibitors and ARBs is influenced by the activa-
tion of alternate enzymatic mechanisms leading to Ang II 
production, the inability of these drugs to reach intracellular 
sites at which Ang II can be generated, or both [44•]. As 
early as 1982, Biollaz et al. [45] demonstrated an “escape 
mechanism” of ACE enzymatic activity in patients medi-
cated with enalapril to explain the restoration of plasma 
Ang II levels in the presence of complete suppression of 
plasma ACE enzymatic activity. Because the “ACE escape” 
phenomenon is based on the presence of normal to high cir-
culating Ang II during long-term ACE inhibition, the term 
does not differentiate whether the restoration of plasma Ang 
II concentrations is due to reactivation of ACE gene expres-
sion or the emergence of alternate non-canonical ACE-
independent pathways for Ang II production [46–48]. This 
second possibility is strengthened by the demonstration that 
a greater blood pressure reduction can be achieved by the 
addition of ARB to an ACE inhibitor [49, 50] or a DRI to 
an ARB [51, 52].

Convincing literature reveals the existence of tissue-
generating angiotensins through enzymatic pathways that 
depart from renin/ACE-dependent mechanisms. Among the 
proteases that can generate Ang II, the serine protease chy-
mase (EC 3.4. 21.39) shows a high and specific ability to 
generate Ang II in tissues. A comprehensive discussion of 
chymase biological actions in tissue remodeling and heart 
disease has been reviewed recently [53••]. The data demon-
strates compartmentalization of Ang II synthesis by differ-
ent enzymatic pathways in the interstitial and intravascular 
spaces (Fig. 4 and reference [54•]).

Since the original discovery of chymase’s specificity and 
catalytic activity for Ang I into Ang II hydrolysis in human 
cardiac membranes [55], its importance in blood pressure 
regulation and adverse cardiovascular remodeling continues 
to be underappreciated [56, 57, 58•, 59]. Opposing argu-
ments against a chymase role in the pathogenesis of CVD, as 
advocated by Danser and colleagues [58•], are deeply flawed 
because they ignore chymase contribution as an intracel-
lular Ang II forming enzyme [60, 61•, 63••]. Intracellu-
lar Ang II generation, found in cardiac, renal, and vascular 
endothelial cells, stimulates remodeling of the extracellular 

Fig. 2  Forest plot of the reported relative risk (RR) (top panel) and 
calculated residual risk (bottom panel) of hypertension trials compar-
ing ACE inhibitors to conventional therapy. Values are expressed as 
means ± 95% Confidence Intervals. Data are abstracted from the data 
reported in STOP 2: β-blockers (atenolol, metoprolol, pindolol, and 
amiloride versus enalapril or lisinopril). The primary endpoint was 
fatal stroke, fatal myocardial infarction, and other fatal cardiovascu-
lar diseases [120]. CAPPP: captopril versus conventional antihyper-
tensive therapy (diuretic, β-blockers). Primary endpoint: composite 
of fatal and nonfatal myocardial infarction, stroke, and other cardio-
vascular deaths [121]. HOPE: ramipril versus placebo. Primary out-
come was a composite of myocardial infarction, stroke, or death from 
cardiovascular causes [122]. ALLHAT: lisinopril vs chlorthalidone 
or amlodipine. Primary outcome: combined fatal coronary artery 
disease or non-fatal myocardial infarction [123]. ANBP2: enalapril 
or other ACE inhibitor vs hydrochlorothiazide or other diuretic. Pri-
mary outcome was difference in the total number of cardiovascular 
events between the two treatment groups [124]. Pilot HYVET: lisin-
opril or other ACE inhibitor vs bendroflumethiazide (or other diu-
retic) or no treatment. Primary outcome was differences in mortality 
from all causes between the groups [125]. JMIC-B: ACE inhibitor vs 
nifedipine retard. Primary endpoint was overall incidence of cardiac 
events and coronary interventions [126]. ASCOT BPLA: amlodi-
pine ± perindopril vs atenolol ± bendroflumethiazide. Primary end-
point was non-fatal myocardial infarction and fatal coronary artery 
disease [127]. ACCOMPLISH: benazepril combined with amlodi-
pine versus benazepril combined with hydrochlorothiazide. Primary 
endpoint was composite of death from cardiovascular causes, nonfa-
tal myocardial infarction, nonfatal stroke, hospitalization for angina, 
resuscitation after sudden cardiac arrest, and coronary revasculariza-
tion [128]. HYVET: indapamide ± perindopril vs placebo in octoge-
narian hypertensive individuals. Primary endpoint was either fatal or 
non-fatal strokes [129]. The random effect meta-analysis model was 
used to compute an overall pooled relative risk ratio. The weighted 
mean difference across the two groups was computed to estimate the 
pooled size effect. The 95% CI was calculated using Wilson method. 
Statistical heterogeneity was tested by Cochran’s Q statistics and a 
value of I2 ≥ 75% was considered an indication of high heterogene-
ity. Publication bias was investigated using Deek’s test. The statistical 
significance was set at a p value < 0.05. The analyses were performed 
by using R Studio version 1.3.1056, R 4.0.3 with “metafor” packages

◂
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matrix [64]. In humans, chymase activity and expression are 
increased in the enlarged left atrial of patients with a diagno-
sis of mitral valve disease, persistent atrial fibrillation, and 
the post-operative pericardial fluid of patients undergoing 
open heart surgery [64, 65•, 66, 67•, 68]. Furthermore, renin 
[69•] and cathepsin D [70] are implicated in the intracellu-
lar hydrolysis of angiotensinogen (AGT) into Ang I, while 

chymase accounts for 90% of the cardiac Ang II forming 
activity [62, 71, 72].

As discussed by us elsewhere [53••], a reluctance to 
accept a critical role of chymase in human diseases is based 
on the unproven idea that pharmacological blockade of 
 AT1-R would be sufficient to prevent pathological conse-
quences of Ang II production escaping ACE inhibition. The 
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limited efficacy of ACE inhibitors and ARBs to ameliorate 
clinical events does not support this idea. New research iden-
tifies chymase in Ang II generation from a novel extended 
form of Ang I—named angiotensin-(1–12) [Ang-(1‒12)] 
[73••, 74]—in normal and diseased human atrial and ven-
tricular tissues [65•, 67•, 68, 75••, 76, 77•], and the blood 
of primary hypertensive patients naïve or not naïve to anti-
hypertensive medications [78•, 79••]..

The characterization of Ang-(1‒12) as a renin-independent  
Ang II forming substrate (Fig. 4) and our references [44•, 
80] explain a surge in circulating Ang II levels in patients 
medicated with ACE inhibitors [81, 82]. Although Ang-
(1‒12) seems to be preferentially converted to Ang II by 
ACE in the circulation [83], chymase hydrolyzes Ang-
(1‒12) directly into Ang II in the human and rodent hearts 
[65•, 76, 77•] and the rat bone marrow [84]. The clinical 
importance of Ang-(1‒12) as an alternate Ang II forming 
pathway has gained importance with the demonstration 
of increased circulating levels of the substrate in primary 
hypertensive patients [78•, 79••] and the findings that a 
monoclonal antibody (mAb) directed against the human 
Ang-(1‒12) C-terminus induces a sustained fall in the 
elevated blood pressure of transgenic rats with the genetic 
expression of the human AGT gene in their genome [85••]. 
The discovery of Ang-(1–12) as an endogenous Ang II-
forming substrate reveals a new avenue for developing anti-
hypertensive and cardioprotective therapies that may obviate 

known shortcomings of current chemical inhibitors while 
improving patient adherence, a significant problem with 
antihypertensive therapy [86]. Recent data strengthens how 
the circulating and paracrine/intracrine systems interact with 
each other. While the presence of catalytic enzymes cleaving 
AGT in cellular cytosolic and nuclear compartments seems 
not to be disputed, less clear is whether the formation of 
angiotensin peptides results from the metabolism of intra-
cellularly formed AGT or its uptake from the interstitium. 
Pulgar et al. [87•] showed that AGT is internalized by a 
non-AT1-R-dependent pathway in human retinal pigment 
cells, extending a previous demonstration by us of increased 
cardiac myocyte uptake of Ang-(1‒12) in SHR [88]. These 
data establish a route for processing internalized AGT into 
Ang II by chymase, dismissing the faulty argument that chy-
mase has no function in Ang II generation in the rodent and  
human heart [58•].

Emerging evidence of the limited efficacy of RAS chemi-
cal inhibitors to halt disease progression and increased 
awareness of suboptimal adherence to antihypertensive 
therapy has brought about the development of molecular 
interventions capable of modulating or inhibiting gene 
expression through transcriptional or translational repres-
sion. Two different approaches targeting hepatic AGT are 
currently being tested. One approach uses antisense oligonu-
cleotides (ASO) to suppress the expression of hepatic AGT 
[89–92, 93••], capitalizing on the early and generally forgot-
ten work of Ian Phillips and colleagues [94] a quarter of a 
century ago. The other strategy focuses on the repression of 
hepatic AGT translation through synthesizing small inter-
fering RNA (siRNA) [95–99, 100••, 101, 102••, 103–105]. 
Both approaches seem to exert suppression of circulating 
AGT associated with a decrease in blood pressure. While 
a detailed analysis of the data derived from preclinical and 
phase I and phase II trials using AGT siRNAs or AGT ASO 
is outside the scope of this review, the apparent benefits of 
these procedures in avoiding the need for the daily adminis-
tration of medications and increasing tolerability may lead to 
better blood pressure control and adherence to therapy. Nev-
ertheless, a precautionary note has been levied by us [106•] 
because no information exists regarding the long-term 
consequences of suppressing the non-angiotensin protein 
component of AGT protein—des-(Ang I)-AGT [107, 108, 
109••]—that is linked to angiogenesis and tumorigenicity 
[110, 111•, 112].

The discovery of Ang-(1‒12) as an alternate non-renin-
dependent source for direct Ang II generation suggested 
the possibility of using immunotherapeutic approaches to 
prevent the conversion of the Ang-(1‒12) substrate into 
Ang II. The demonstration of a heightened level of plasma 
Ang-(1‒12) in untreated primary hypertension [78•, 85••] 
stimulated a proof-of-concept study in which a specific mAb 
directed against the human C-terminus of the dodecapeptide 

Fig. 3  Forest plot of the reported relative risk (RR) (top panel) and 
calculated residual risk (bottom panel) of hypertension trials com-
paring ARBs to other antihypertensive therapies. Data are abstracted 
from the reported primary endpoint of LIFE: losartan ± hydrochlo-
rothiazide vs atenolol ± hydrochlorothiazide. Primary endpoint was 
cardiovascular events (death, myocardial infarction, or stroke [130]). 
SCOPE: candesartan vs placebo. Primary endpoint was major cardio-
vascular events, a composite of cardiovascular death, non-fatal stroke 
and non-fatal myocardial infarction [131]. VALUE: valsartan vs 
amlodipine. Primary endpoint was superiority of the valsartan-based 
treatment in reduction of cardiac morbidity and mortality among high 
cardiovascular risk patients [132]. E-COST: candesartan versus con-
ventional therapy other than ACE inhibitors. Primary endpoint was 
hospitalization due to stroke, myocardial infarction, and congestive 
heart failure [133]. MOSES: eprosartan vs nitrendipine. Primary 
endpoint was composite of total mortality and all cardiovascular and 
cerebrovascular events [134]. PRoFESS: telmisartan vs placebo. Pri-
mary endpoint was recurrent stroke [135]. CASE-J: candesartan vs 
amlodipine. Primary endpoint was first fatal/non-fatal cardiovascular 
event [136]. ONTARGET: ramipril versus telmisartan and their com-
bination. Primary endpoint was death from cardiovascular causes, 
myocardial infarction, stroke, or heart failure hospitalization [137]. 
TRASCEND: telmisartan vs placebo. The primary outcome was the 
composite of cardiovascular death, myocardial infarction, stroke, or 
hospitalization for heart failure [138]. HIJ-CREATE: candesartan vs 
non-ARB. Primary endpoint was occurrence of a first major adverse 
cardiovascular event [139]. COLM: olmesartan combined with a cal-
cium channel blocker versus a diuretic. Primary endpoint was a com-
posite of cardiovascular morbidity and mortality [140]. Statistical 
procedures as described in Fig. 2 legend

◂
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counteracted the constrictor activity of generated Ang II and 
induced a sustained fall in the elevated blood pressure of 
transgenic rats expressing the human AGT [85••]. The data 
obtained in this study demonstrate a significant ability of the 
h-Ang-(1–12) mAb to induce a vasodilator action in isolated 
perfused carotid artery rings and systemic circulation [85••]. 
Further work is necessary to determine the long-term effect 
of Ang-(1‒12) immunoneutralization in the control of blood 
pressure. Nevertheless, the proven specificity of the h-Ang-
(1–12) mAb in terms of blocking the catalytic site of the 
substrate to the actions of ACE and chymase renders this 
approach beneficial in terms of avoiding problems arising 
from interfering with the non-angiotensin coding sequence 
of AGT [106•].

Conclusions

“The emperor has no clothes describes a situation in 
which people are afraid to criticize something or some-
one because the perceived wisdom of the masses is that 
the thing or person is good or important” (https:// www. 
bookb rowse. com/ expre ssions). The applicability of this 
tale to the topic of this review is a literary license high-
lighting the general acceptance of the superior proper-
ties of ACE inhibitors and ARBs not only in undeniable 
efficacy in controlling blood pressure but their overes-
timated efficacy in reducing clinical events and cardio-
vascular and total mortality. Identifying a residual risk 
many orders of magnitude greater than the relative risk 
reduction in landmark hypertension trials using these 
drugs yields a different conclusion. This issue, addressed 
in the past by other investigators [13••, 30••, 33, 113, 
114] and the Blood Pressure Trialists [7•, 115, 116], 

remains unappreciated. Health research dissemination 
of risk information in relative risk is misleading because 
it compares the same risk of events in another group [3].

Since the original characterization of angiotensin-(1–7) 
[Ang-(1–7)] by Ferrario’s laboratory [117, 118, 119••] 
as a biologically active peptide functioning to oppose the 
vasoconstrictor and growth-promoting actions of Ang II, 
the biochemical physiology of the RAS revealed a com-
plex non-linear system where alternate biotransformation 
pathways not involving renin or ACE participate in the 
regulation of arterial pressure, tissue perfusion, and cellu-
lar homeostasis. Although the efficacy of chemical drugs 
to oppose the hydrolytic activity of renin, ACE, or prevent 
Ang II binding to  AT1-R is now established, their effec-
tiveness in halting adverse cardiovascular remodeling and 
cardiovascular mortality may be limited because of their 
lack of access to the cellular compartments where intrac-
rine processing of AGT occurs. Novel strategies suppress-
ing hepatic AGT synthesis or expression or preventing 
Ang-(1‒12) metabolism with a specific mAb/nanobody 
[85••] create a new opportunity to advance the pharma-
cotherapy of hypertension treatment and possibly other 
diseases in which angiotensins play a contributory role.

We hope that the data reviewed here will foster a greater 
understanding of the limitations of current RAS-based 
therapies in hypertension, stimulate further research in 
seeking molecular approaches to halt or even reverse the 
cardiovascular complications of primary hypertension, and 
encourage investigating a new generation of ACE inhibi-
tors and ARBs with increased capacity to reach the intra-
cellular compartments at which Ang II can be generated.

Author Contribution All authors contributed equally to the conception 
of the review and approved the version submitted here.

Fig. 4  Contrasting biotransfor-
mation pathways for angiotensin 
II (Ang II) generation in blood, 
the extracellular interstitium, 
and the intracellular compart-
ments. Pulmonary epithelial and 
vascular endothelium ACE are 
primarily responsible for hydro-
lyzing Ang-(1‒12) into Ang I 
and Ang II in the circulatory 
compartment [83]. ACE con-
tribution wanes as the primary 
source for Ang-(1‒12) metabo-
lism in the interstitial space. 
Within the cell, Ang-(1‒12) is 
converted to Ang II directly as 
Ang I is essentially not present 
[65•, 75••, 77•]. Abbreviations 
as defined in text
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